Blind Speech Separation in Multiple Environments Using a Frequency Oriented PCA Method for Convolutive Mixtures

نویسندگان

  • Yasmina Benabderrahmane
  • Sid-Ahmed Selouani
  • Douglas D. O'Shaughnessy
چکیده

This paper reports the results of a comparative study on blind speech separation (BSS) of two types of convolutive mixtures. The separation criterion is based on Frequency Oriented Principal Components Analysis (FOPCA). This method is compared to two other well-known methods: the Degenerate Unmixing Evaluation Technique (DUET) and Convolutive Fast Independent Component Analysis (C-FICA). The efficiency of FOPCA is exploited to derive a BSS algorithm for the under-determined case (more speakers than microphones). The FOPCA method is objectively compared in terms of signal-to-interference ratio (SIR) and the Perceptual Evaluation of Speech Quality (PESQ) criteria and subjectively by the Mean Opinion Score (MOS). Usually, the conventional algorithms in the frequency domain are subject to permutation problems. On the other hand, the proposed algorithm has the attractive feature that this inconvenience usually arising does not occur.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Oriented PCA method for blind speech separation of convolutive mixtures

This paper deals with blind speech separation of convolutive mixtures of sources. The separation criterion is based on Oriented Principal Components Analysis (OPCA) in the frequency domain. OPCA is a (second order) extension of standard Principal Component Analysis (PCA) aiming at maximizing the power ratio of a pair of signals. The convolutive mixing is obtained by modeling the Head Related Tr...

متن کامل

Subband-Based Blind Separation for Convolutive Mixtures of Speech

We propose utilizing subband-based blind source separation (BSS) for convolutive mixtures of speech. This is motivated by the drawback of frequency-domain BSS, i.e., when a long frame with a fixed long frame-shift is used to cover reverberation, the number of samples in each frequency decreases and the separation performance is degraded. In subband BSS, (1) by using a moderate number of subband...

متن کامل

A dynamic algorithm for blind separation of convolutive sound mixtures

We study an efficient dynamic blind source separation algorithm of convolutive sound mixtures based on updating statistical information in the frequency domain, and minimizing the support of time domain demixing filters by a weighted least square method. The permutation and scaling indeterminacies of separation, and concatenations of signals in adjacent time frames are resolved with optimizatio...

متن کامل

Blind Source Separation of Convolutive Mixtures of Speech in Frequency Domain

This paper overviews a total solution for frequencydomain blind source separation (BSS) of convolutive mixtures of audio signals, especially speech. Frequency-domain BSS performs independent component analysis (ICA) in each frequency bin, and this is more efficient than time-domain BSS. We describe a sophisticated total solution for frequency-domain BSS, including permutation, scaling, circular...

متن کامل

A RobustICA Based Algorithm for Blind Separation of Convolutive Mixtures

1  Abstract— We propose a frequency-domain method based on robust independent component analysis (RICA) to address the multichannel Blind Source Separation (BSS) problem of convolutive speech mixtures in highly reverberant environments. We impose regularization processes to tackle the ill-conditioning problem of the covariance matrix and to mitigate the performance degradation in the frequency...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011